Weak alignment NMR: a hawk-eyed view of biomolecular structure.

نویسندگان

  • Ad Bax
  • Alexander Grishaev
چکیده

Imposing a very slight deviation from the isotropic random distribution of macromolecules in solution in an NMR sample tube permits the measurement of residual internuclear dipolar couplings (RDCs). Such interactions are very sensitive functions of the time-averaged orientation of the corresponding internuclear vectors and thereby offer highly precise structural information. In recent years, advances have been made both in the technology to measure RDCs and in the computational procedures that integrate this information in the structure determination process. The exceptional precision with which RDCs can be measured under weakly aligned conditions is also starting to reveal the mostly, but not universally, subtle effects of internal protein dynamics. Importantly, RDCs potentially can reveal motions taking place on a timescale slower than rotational diffusion and analysis is uniquely sensitive to the direction of motion, not just its amplitude.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An easy way to include weak alignment constraints into NMR structure calculations.

We have recently shown that an energy penalty for the incorporation of residual tensorial constraints into molecular structure calculations can be formulated without the explicit knowledge of the Saupe orientation tensor (Moltke and Grzesiek. J. Biomol. NMR, 1999, 15, 77-82). Here we report the implementation of such an algorithm into the program X-PLOR. The new algorithm is easy to use and has...

متن کامل

A unifying probabilistic framework for analyzing residual dipolar couplings

Residual dipolar couplings provide complementary information to the nuclear Overhauser effect measurements that are traditionally used in biomolecular structure determination by NMR. In a de novo structure determination, however, lack of knowledge about the degree and orientation of molecular alignment complicates the analysis of dipolar coupling data. We present a probabilistic framework for a...

متن کامل

A new approach for applying residual dipolar couplings as restraints in structure elucidation.

Residual dipolar couplings are useful global structural restraints. The dipolar couplings define the orientation of a vector with respect to the alignment tensor. Although the size of the alignment tensor can be derived from the distribution of the experimental dipolar couplings, its orientation with respect to the coordinate system of the molecule is unknown at the beginning of structure deter...

متن کامل

Novel techniques for weak alignment of proteins in solution using chemical tags coordinating lanthanide ions.

A molecule with an anisotropic magnetic susceptibility is spontaneously aligned in a static magnetic field. Alignment of such a molecule yields residual dipolar couplings and pseudocontact shifts. Lanthanide ions have recently been successfully used to provide an anisotropic magnetic susceptibility in target molecules either by replacing a calcium ion with a lanthanide ion in calcium-binding pr...

متن کامل

Disodium cromoglycate: exploiting its properties as a NMR weak-aligning medium for small organic molecules.

Chromonic phases are a family of lyotropic liquid crystals (LC) formed by ionic aromatic mesogens such as disodium cromoglycate (cromolyn), sunset yellow and others. It is well known that chromonic phases are oriented in the presence of external magnetic fields, leading to the observation of anisotropic NMR observables such as quadrupolar splittings or residual dipolar couplings. Despite the fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current opinion in structural biology

دوره 15 5  شماره 

صفحات  -

تاریخ انتشار 2005